

Datasheet Model LiFePo4 12.8V 4.000mAh

Daniel Beck Königsteiner Straße 4 61449 Steinbach Doc. Version 1.1 15.01.2021

For any questions: Please contact us.

info@theeremit.de 01602614589 www.theeremit.de

EREMIT is an in germany registered trademark.

This specification is applies to describe the related battery product in this Specification and the battery/cell supplied by EREMIT

All cells within this pack are originally produced by Bixell Technology limited. For further informations related to this product please contact us first.

Page 1: Main information Page 2-3: Cell Characteristics Page 4: Protection board Data

Page 5: Charge/Discharge notes; Cell Parts

Page 6: Cell Handling Page 7: Warranty

Number	Description	Ratings	Remarks
1;	Nominal Capacity	4000mAh	At 0,2C CC discharge
2;	Minimal capacity	3950mAh	
3;	Nominal Voltage	12.8V	4S2P Cell configuration 4x 3.2V
4;	Delivery voltage	12.2 V	On delivery
5;	Charge voltage	14.6V	
6;	Standart Charging	0.5C Standart	2.5 hour nominal
		1C max.	1.5 hour rapid
7;	Standart discharging	3C CC to 2.5V	12A CC
		5C max. To 2.5V	20A max.
		10C Pulse	Pulse below 1 second.
			Higher pulse cause the
			protection to switch off

8;	Cell internal impedance	≤30mOhm	Measured at 1khz after
			50%
			Charge
9;	Operating temperature	0-45°C	Maximum -10° - 60°C
		Recommended	10 - 34°C
10;	Internal Chemical charact.	IFR	Lithium-Iron-Phosphate

10; Long time storage (-5°C – 30°C)

If the battery need be stored for a long time, the voltage should be higher than 13.0V, and stored in the condition as storage proposal. It need at least one charge & discharge cycle every year, and need to get recharged to storage voltage every 6 month

Maximum sizes: 40 x 70 x 75mm Maximum weight: 380gramm

Battery Characteristics

Number	Description	Ratings	Remarks
1;	Standart	Charging cell initially with constant	
	Charge	current at 0.5C to 14.6V, then with	
		constant voltage at 14.6V till charge	
		current is below 0.02C	
2;	Rated	Capacity means the discharge capacity	4000mAh
	capacity	of the cell, which is measured with	
		discharge current of 0.2C with 9.0V	
		cut-off voltage after standard charge.	
3;	Cycle life	Test condition:	>2000
		Carge 0.5C to 14.6V -> discharge 1C to	
		9.0V	
		75% or more of 1st cycle capacity at	
		0.5C discharge of operation	
4;	Self	After standart charging stored 1 month	Above 98% residual
	discharge	under storage condition descriped in	capacity
		page 2; then measured the capacity with	
		0.2C till 9.0V	

Page 3

Protection circuit Data

Item	Symbol	Content	Criterion	
	V_{DET1}	Over charge detection voltage	3.75±0.05V	
Over charge Protection	tV _{DET1}	Over charge detection delay time	0.015~0.14s	
	$ m V_{REL1}$	Over charge release voltage	3.55±0.05V	
Over discharge protection	$V_{ m DET2}$	Over discharge detection voltage	2±0.1V	
Over discharge protection	tV _{DET2}	Over discharge detection delay time	95~173ms	
	V_{REL2}	Over discharge release voltage	2.5±0.10V	
	V_{DET3}	Over current detection voltage	N/A	
Over current protection	I_{DP}	Over current detection current	40~60A	
-	tV _{DET3}	Detection delay time	0.1~50S	
		Release condition	Cut load	
GI 4 4		Detection condition	Exterior short circuit	
Short protection	T _{SHORT}	Detection delay time	50μs	
		Release condition	Cut short circuit	
Interior resistance	R_{DS}	Main loop electrify resistance	$V_C=3.8V$; $R_{DS}\leq45m\Omega$	
Balancer work	B_{C}	Balanced Voltage	3.55V±0.02V	
	$B_{\rm C}$	Balanced current	30mA	
Current consumption	I_{DD}	Current consume in normal operation for full board	25μA Type 50μA Max	

Technical drawing of protection board

Over-Discharge

Short time over discharge does not affect the battery function, but long time over discharges can damage battery performance, and can't use any more. due to its own self-discharge characteristics also lead to over-discharge, to prevent over-discharge occurs, the battery should maintain the certain electric quantity, the cell shall be charged periodically to maintain between 3.0V and 3.2V – in total the pack shall be charged to between 12.0V and 13.2V.

Over-discharging may causes loss of cell performance, characteristics, or battery functions. The electrical products shall be equipped with a device to prevent further discharging exceeding a cut-off

Charging current: Do not surpass the largest charging current that specification stipulated.

Charging voltage: Do not surpass the highest limited voltage that specification stipulated.

Charging temperature: within temperature scope that specification stipulated.

Charge with constant current, then with the constant voltage, no reverse charge, which is Page 5 dangerous

No.	Part Name	Description	Q'ty	Remark
1	Cell/Pack	LiFePo4-12.8V-4000mAh	1	
2	Patterns Tape	Shrink tube, double walled acryl tape	1	
3	PCM	4x Hycon FH2112-CB form HY 6x SLD90N03T	1	
4	Wire	AWG18	2	

12. Handling of Cells

12. Warning and cautions in handling the lithium-ion cell

To prevent the possibility of the cell from leaking, heating, explosion, please observe the following

precautions:

- Don't immerse the cell in water.
- > Don't use and leave the cell near a heat source, such as fire or heater.
- Don't reverse the positive and negative terminals.
- Don't connect the cell to an electrical outlet directly.
- Don't discard the cell in fire or heater.
- Don't connect the positive and negative terminal directly with metal objects.
- > Don't transport and store the cell together with metal objects such as necklaces, hairpins.
- > Don't strike, throw or trample the cell.
- Don't directly solder the cell.
- Don't pierce the cell with a nail or other sharp object.

Caution

- If the cell leaks and the electrolyte get into your eyes, don't wipe eyes, instead, thoroughly rinse the eyes with clean running water for at least 15 minutes, and immediately seek medical attention. Otherwise, eye injury can result.
- If the cell gives off an odor, generates heat, becomes discolored or deformed, or in any way appears
 - abnormal during usage, recharging or storage, immediately remove it from the device or cell charger and stop using it.

Period of Warranty

The period of warranty is one year from the date of shipment. Replacement is guaranteed within warranty if battery with defects proven due to manufacturing process instead of the customer's abuse and misuse.

Page 7